Numerical Analysis and Scientific Computing Preprint Seria New Homogenization Method for Diffusion Equations

نویسنده

  • Yuri A. Kuznetsov
چکیده

In this paper, we propose and investigate a new homogenization method for diffusion problems in domains with multiple inclusions with big values of diffusion coefficients. The diffusion problem is approximated by the P1-finite element method on a triangular mesh. The underlying algebraic problem is replaced by a special system with a saddle point matrix. For the solution of the saddle point system we use the typical asymptotic expansion. We prove the error estimates and convergence of the expended solutions. Numerical results confirm the theoretical conclusions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Analysis and Scientific Computing Preprint Seria An Eulerian space-time finite element method for diffusion problems on evolving surfaces

In this paper, we study numerical methods for the solution of partial differential equations on evolving surfaces. The evolving hypersurface in Rd defines a d-dimensional spacetime manifold in the space-time continuum Rd+1. We derive and analyze a variational formulation for a class of diffusion problems on the space-time manifold. For this variational formulation new well-posedness and stabili...

متن کامل

Numerical Analysis and Scientific Computing Preprint Seria A trace finite element method for a class of coupled bulk-interface transport problems

In this paper we study a system of advection-diffusion equations in a bulk domain coupled to an advection-diffusion equation on an embedded surface. Such systems of coupled partial differential equations arise in, for example, the modeling of transport and diffusion of surfactants in two-phase flows. The model considered here accounts for adsorption-desorption of the surfactants at a sharp inte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017